无敌洪荒 补充基数…

无敌洪荒 我是吹子 武侠仙侠 | 武侠修真 更新时间:2020-10-14
瀑布阅读
瀑布
从本章开始听

在集合论中对无穷有不同的定义。德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。

这里比较不同的无穷的“大小”的时候唯一的办法就是通过是否可以建立“一一对应关系”来判断,而抛弃了欧几里得“整体大于部分”的看法。例如整数集和自然数集由于可以建立一一对应的关系,它们就具有相同的无穷基数。

自然数集是具有最小基数的无穷集,它的基数用希伯来字母阿列夫右下角标0()来表示。

可以证明,任何一个集合的幂集(所有子集所形成的集合)的比原集合大,如果原来的基数是a,则幂集的基数记为2a(2的a次方)。这称为康托尔定理。

对于两个无穷集合,可以以能否建立它们之间的双射,作为比较其大小的标准。

确切地讲,我们用基数的概念来描述集合,对于有限集合而言,可以认为它的基数就是元素的个数,但对无穷集而言,基数只能以下面的方式理解(当然也可以据此把无穷集合的基数说成是它元素的个数,但这个个数已经不是日常用语中的意思)。

如果集合A与集合B之间存在双射(一一对应),就认为它们的基数一样大;如果A与B的某个子集有双射,就认为A的基数不比B更大,也就是A到B有单射,B到A有满射;当A的基数不比B更大,且A、B基数不一样大时,就认为A比B基数小。

在ZFC集合论的框架下,任何集合都是良序的,从而两个集的基数总是大于、小于、等于中的一种,不会出现无法比较的情况。但若不包括选择公理,只有良序集的基数才能比较。

例如,

可数集合,如自然数集,整数集乃至有理数集对应的基数被定义为“阿列夫零”()。

比可数集合“大”的称之为不可数集合,如实数集,其基数与自然数的幂集相同,为二的阿列夫零次方(),被定义为“阿列夫壹”()。

由于一个无穷集合的幂集总是具有比它本身更高的基数,所以通过构造一系列的幂集,可以证明无穷的基数的个数是无穷的。然而有趣的是,无穷基数的个数比任何基数都多,从而它是一个比任何无穷大都要大的“无穷大”,它不能对应于一个基数,否则会产生康托尔悖论的一种形式。最大的无穷大是多大呢?答案是没有尽头。事实上,(0,1)上的实数可以和正整数的所有子集的集合一一对应:把这些实数写成二进制,小数点后第n位为1,对应于n在子集中;为0则对应不在子集中。这样[0,1)上的实数就和正整数的子集有了一一对应,因此实数和正整数集的所有子集的个数一样多。也可以证明前面所说曲线可以和实数集的幂集有一一对应关系。我们把前面说的所有曲线看成一个集合,他的所有子集的个数又将比这个集合大。这个过程可以一直进行下去,得到越来越大的无穷大。

另外还有一个问题,即连续统假设:整数的无穷大和实数的无穷大之间存不存在别的无穷大。也就是说,是否存在比整数基数大,而比实数基数小的无穷基数,也就是与之间有没有别的基数。

更一般的,任给定无穷基数a,在a和2a之间是否有别的基数?这称为广义连续统假设。

数学家证明了这样一个事实:连续统假设无法在ZFC集合论公理下被证明或证伪,换而言之,承认连续统假设将导出一个体系;不承认将导出另外一种体系。连续统假设或其否定均可作为额外的公理。

在集合论里可以证明,比一个集合基数大的最小基数是存在的,如果你承认连续统假设,那么可以把改写成,改写成,某些书籍正是这么做的,但是未明确指出这一点。

不可达基数(inaccessiblecardinals)是强弱不可达基数的统称。如果K是不可数的、正则的极限基数,则称是弱不可达基数。如果是不可数的、正则的强极限基数,则称K是强不可达基数。这两类大基数合称不可达基数(或不可到达基数)。不可达基数是强弱不可达基数的统称。如果κ是不可数的、正则的极限基数,则称κ是弱不可达基数;如果κ是不可数的、正则的强极限基数,则称κ是强不可达基数。这两类大基数合称不可达基数(或不可到达基数),也有文献只把强不可达基数称为不可达基数。

由于任何基数λ的后继基数λ+不超过λ的幂2λ,所以每个强不可达基数必为弱不可达基数;又由于在广义连续统假设GCH之下,λ+=2λ,所以在GCH之下,每个弱不达基数也是强不可达基数。之所以如此称呼这类大基数,是因为不能用通常的集合论运算来“到达”它们。事实上,若κ是强不可达基数,又集合X的基数|X|κ,则幂集P(X)的基数也小于κ;又若|S|κ,且对每个X∈S,|X|κ,则|∪S|κ。这就是说,由小于κ的基数,无论进行何种运算,总达不到κ。可数无穷基数N0也具有上述两条性质,因此,也可以说在有限基数的范围内,用除去无穷公理之外的任何集论运算,N0也是“不可到达”的。这就清楚地看出,不可达基数确实是无穷基数0的一种自然推广。“存在不可达基数”已不是ZFC系统的定理。若想肯定这一事实,只有引入大基数公理。事实上,若κ是强不可达基数,则直到κ层的集Vκ就是ZFC系统的模型

弱不可达基数是一种正则基数。既是极限基数又是正则基数的不可数基数。若Nα为弱不可达基数,则cf(α)=α,且α是极限序数。因为cf(Nα)≤Nα,Nα≥α,所以Nα=α。可见Nα是非常大的。由定义还可看出,不可达基数κ不可能由比它小的基数通过基数的加法、乘法、乘幂和取极限等运算得到。

强不可达基数

强不可达基数是一种正则基数。简称不可达基数。既是正则的又是强极限的无穷基数。即如果正则基数κ满足κN0,且对任何λκ有2λκ,κ就是一个强不可达基数。强不可达基数一定是弱不可达的。在广义连续统假设成立时,每个弱不可达基数也是强不可达的。这时这两个概念是相同的。在ZFC系统中不能证明不可达基数的存在性。称这种基数为不可达的原因是它不可能从比它小的基数出发,使用通常的集合论运算得到。

正则基数

正则基数是一种特殊基数。如果α为极限序数,且cf(α)=α,则称α为正则的。正则的基数称为正则基数。不正则的无穷基数称为奇异基数。由于正则的序数一定是基数,故人们对正则的序数、正则序数、正则的基数和正则基数这几个概念不加区别地使用。通常也有人将ω称为正则基数,将Nα+1称为正则序数。正则性是基数的重要概念之一,它由德国数学家豪斯多夫(Hausdorff,F.)于1908年引入。关于正则基数的性质曾引申出许多重要的集合论命题,其中最重要的问题是:是否能在ZF系统中证明存在大于ω的正则基数?一方面,由选择公理知,N1,N2,…,Nα+1都是大于ω的正则基数。

大基数的研究由来已久。例如,早在1911年,就开始了对今天称为马赫罗(Mahlo,P.)基数的一类基数的研究;1930年后,就提出了不可达基数和可测基数的概念。但在20世纪60年代之前,这种研究是零星的、分散的。直到20世纪60年代,人们才将大基数公理作为集合论的附加公理来加以研究。近年来,含大基数的内模型成为集合论研究的热点。人们更习惯于用从全域V到某传递类M的非平凡的基本嵌入(elementaryembedding)j:V→M来描述大基数公理。设κ为j的临界点,即最小的满足j(α)=α的序数,记为κ=crit(j)。此时,V和M越相似,所引入的大基数公理越强。例如,如果M?M,则称κ为λ超紧基数;如果对任意为λ≥κ,κ为λ超紧基数,则称k为超紧基数;如果Vj(k)?M,则称k为超强基数;如果对于任意的f:κ→κ,存在j:V→M使得crit(j)=k且V?M,其中M是传递的,则称κ为谢拉赫基数;如果对于任意的f:κ→κ,存在δκ,使得f在δ中封闭且存在j:V→M满足crit(j)=δ且V(j(f)(κ)?M,其中M是传递的,则称κ为邬丁基数。如果Vλ?M,则称κ为λ强基数。λ超紧基数是以色列学者索洛韦(Solovay,R.M.)引入的。λ强基数和超强基数这两个概念是从米雪尔(Mitchell,W.)的工作中提取出的。谢拉赫基数是分别根据他们发现的大基数性质而命名的。可以证明:[2]

1.若κ是2超紧基数,则存在κ个小于k的超强基数。

2.若κ是超强基数,则κ是谢拉赫基数并且存在κ个小于κ的谢拉赫基数。

3.若κ是谢拉赫基数,则κ是邬丁基数并且存在κ个小于κ的邬丁基数。

4.若κ是邬丁基数,则κ是不可达基数并且存在κ个小于κ的基数δ满足对于任意的λk,δ是λ强基数。

作为公理集合论研究的三大主流之一,大基数公理的研究与可构造性及力迫法这两者的研究有很大的不同:如果说后两者对集合论中的相容性与独立性进行精细的探讨与刻画的话,那么前者则是充分使用各种数学工具,开拓越来越丰富的集合论研究对象。

公理集合论

用公理及逻辑的方法研究无限集与超穷数的数学理论,是数理逻辑的主要分支之一。

康托尔于19世纪70~80年代的一系列工作开创了对无穷集的研究。他同时还提出了著名的连续假设。1900年前后,人们在康托尔集论中发现了一系列悖论。消除悖论的途经之一是公理方法。策墨罗于1908年发表了集论的第1个公理系,后经佛兰克尔等人的扩充与完善,成为周知的ZF公理系。另一种公理系是由哥德尔与贝尔奈斯等人提出的,称为GB公理系,其中另引入了类的概念。选择公理(AC)早已被人隐蔽地应用了,但首先是由策墨罗明确提出;由于其不直观性,能否作为集论公理曾有争议。多年来,AC与CH是公理集论的中心问题。1938年哥德尔引入可构造集概念,给出AC,CH与ZF的一个模型;1963年柯亨创造力迫法证明了AC与CH关于ZF独立性。其后的发展是扩充ZFC(主要是引入大基数公理)来讨论GCH及其他问题。集论发展的另一侧面是强调它与分析、一般拓扑与测度论等分支的联系,这是描叙性集论的主题。其中苏斯林假设(S.H.)的独立性及有关问题的研究,是公理集论的第2个中心问题。

ZF系的形式语言是只有一个二元关系符号∈的带号的一阶语言。ZF由下面8个公理组成。(1)外延公理。若X与Y有相同的元素,则X=Y。(2)无穷公理。存在无限集。下面5个公理是合法的基本造集规则。(3)配对公理。对集a与b,有一个集合恰好只含有a、b二个元素,记为{a,b}。(4)并集公理。对任集X,其并∪X也是集合。(5)幂集公理。对任集X,其所有子集全体P(X)仍是集合。(6)分离公理。对任集X及性质P,Y={x∈X:x具有性质P}是集合。(7)替换公理。F是一函数(在ZF系中是一导出概念),对任集X,F[X]={F(x):x∈X}是集合。在上述公理基础上,朴素集论中的一系列基本运算与性质均可导出。(8)正规公理。每个非空集含有一个∈-极小元(非空集关于∈是一偏序集)。应用正规公理,我们可排除罗素悖论且建立起全体集合的累积分层体系。利用分离公理取代概括原理(指每一性质确定一个集合),便可避免关于最大序数与基数的悖论。选择公理AC:对任非空集S,存在函数f满足,对任X∈S,若X≠?则f(x)∈X。称f为S的选择函数。ZF添上AC简记为ZFC。AC有许多不同形式的等价变形。例如,代数与分析中常用的曹恩引理,良序原理,拓扑中关于紧空间直积的吉洪诺夫(Tychonoff)定理等等。另外,无穷数学中的许多重要定理的证明都岭不开AC(如戴德金无限与常规无限概念的等价性,线性空间基的存遮性,泛函中的哈恩-巴拿赫定理,L-不可测集的存在性等)。但由AC(及ZF)也可推出一些怪异的结论,如分球怪论。现已知道,AC与?AC都分别与ZF相容,这情形类似于平面几何中的平行公设。CH与SH是另2个著名的独立性命题。实数序有一个特征:稠密完备的线性序,无界且有可数稠密子集。苏斯林问:能否把最后一条件即可分性,换成较弱的“每一非交的开区间族可数”?他猜想这不成立,此即SH。

大基数公理(largecardinalaxioms)是关于大基数存在的一类新加公理。设有关于基数α的一条性质P(α),它是可以用ZFC系统的语言形式描述的,尽管人们根据直觉相信,有很大的α使P(α)为真,但却不能在ZFC系统内证明“?αP(α)”这一命题。人们若将?αP(α)作为公理加入到ZFC系统之中,就称之为一条大基数公理,满足P(α)的α称为大基数。大基数的种类很多。一般地,P(α)都是ω(其基数为0)的某个性质向不可数基数的推广,因而,可以说大基数公理是无穷公理的自然延伸,是人类对无穷世界的认识进一步深化的产物。例如,不可达基数是将ω的“集论运算的不可到达性”推广到不可数基数而得到的大基数。弱紧基数则是将ω所满足的分划关系ω→(ω)22推广至不可数基数而得到的。从这个角度看,大基数公理为人们所乐于接受。增加了大基数公理之后,人们可以对集合论中某些悬而未决的问题做出一定程度的回答。例如,若存在强不可达基数κ,则ZFC相容;若存在拉姆齐基数,则V≠L,即可构造公理不真;若存在强紧基数κ,则V≠L[X]对任何集合X成立,又对于任何大于κ的奇异强极限基数λ,2λ=λ+,这对广义连续统假设做出了部分回答。

大基数是集合论用语。满足某些特殊性质的不可数基数。如“不可达基数”、“可测基数”、“超紧基数”等都是大基数。其中,不可达基数是最小的大基数。在公理集合论ZFC系统中,既不能证明大基数存在,也不能否认大基数存在

飞卢小说网 b.faloo.com 欢迎广大书友光临阅读,创新、原创、火热的连载作品尽在飞卢小说网!

按左右键翻页

最新读者(粉丝)打赏

全部

飞卢小说网声明

为营造健康的网络环境,飞卢坚决抵制淫秽色情,涉黑(暴力、血腥)等违反国家规定的小说在网站上传播,如发现违规作品,请向本站投诉。

本网站为网友写作提供上传空间存储平台,请上传有合法版权的作品,如发现本站有侵犯权利人版权内容的,请向本站投诉。

投诉邮箱:feiying@faloo.com 一经核实,本站将立即删除相关作品并对上传人作封号处理。

关于我们| 小说帮助| 申请小说推荐| Vip签约| Vip充值| 申请作家| 作家福利| 撰写小说| 联系我们| 加入我们| 飞卢小说手机版| 广告招商

AllRights Reserved版权所有 北京创阅科技有限公司 ICP证京B2-20194099 京ICP备18030338号-3 京公安网备11011202002397号 京网文〔2022〕3848-114号

飞卢小说网(b.faloo.com) 中华人民共和国出版物经营许可证(京零通190302号)

RSS 热门小说榜
小说页面生成时间2024/5/30 18:09:55
章节标题
00:00
00:00
< 上一章
下一章 >